Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 848: 157727, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-35926629

RESUMO

In this study, a FeCl3-assisted hydrothermal treatment (HTT) process under mild conditions (90 °C-130 °C) was developed for deep dewatering of anaerobically digested sludge. HTT of sludge at 90 °C-130 °C with 4%-6% Fe3+ ions loading based on total sludge solids followed by mechanical dewatering reduced sludge water content from 82% to 38%-53% and sludge weight by 62%-72%. The treatment increased the flowability of sludge through reduction of apparent viscosity and disintegration of colloidal forces between sludge particles. This study unveiled that FeCl3-assisted HTT process had three mechanisms for improving sludge dewaterability and flowability. The treatment hydrolysed sludge flocs in the presence of Lewis acid FeCl3 and high temperature (90-130 °C). Fe3+ ions also improved dewaterability through the formation of double electric layers and neutralisation of surface negative charges, leading to flocculation of sludge flocs. More importantly, the hydrolysed sludge components produced during HTT process acted as reducing agents and led to in-situ generation of iron oxyhydroxide nanoparticles through reduction-oxidation reactions, further enhancing flocculation/co-precipitation of sludge flocs. The treatment reduced EPS content and changed conformational structures of EPS proteins by breaking down hydrogen bond-maintaining α-helix which led to a loose EPS protein structure and enhanced hydrophobicity and flocculability. Furthermore, the FeCl3-assisted treatment promoted immobilisation of the majority of heavy metals in the sludge matrix through co-precipitation/complexation reactions with iron species and organic/inorganic matters. This indicates that the FeCl3-assisted treatment reduced direct toxicity/bioavailability of the majority of heavy metals and the treated sludge may be suitable for land application. Overall, this study provides new insights into mechanism of FeCl3-assisted HTT process for dewaterability of anaerobically digested sludge and immobilisation of heavy metals.


Assuntos
Metais Pesados , Esgotos , Ferro , Ácidos de Lewis , Substâncias Redutoras , Esgotos/química , Água/química
2.
Carbohydr Polym ; 291: 119602, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35698405

RESUMO

In this study, sugarcane bagasse was pretreated with acid-catalyzed alcohols, i.e., ethanol (AE), ethylene glycol (AEG) and glycerol (AG) to prepare pulps for producing lignin-containing cellulose nanofibrils (LCNF) with tailored properties, such as hydrophilicity/hydrophobicity and dispersion stability. The results showed that AG-LCNF had the highest lignin content of 16% but relatively low hydrophobicity while AE-LCNF had a low lignin content of 11% but the highest hydrophobicity. LCNF diameter distribution, crystallinity, zeta potentials and thermal stability were also determined to understand the effects of pretreatment solvent. NMR analyses revealed that alcohols modified lignin at α-position by etherification and γ-position by esterification of aliphatic chains, subsequently affecting lignin oxidation by TEMPO in the LCNF production processes, LCNF properties and LCNF dispersion in different solvents. This study provided fundamental information in the design and tailored production of LCNF for various applications, such as manufacturing polymer composites and Pickering emulsions.


Assuntos
Celulose , Saccharum , Catálise , Celulose/química , Grão Comestível , Etanol , Hidrólise , Lignina/química , Saccharum/química
3.
J Environ Manage ; 318: 115524, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35717693

RESUMO

Sludge is a nutrient-rich organic waste generated from wastewater treatment plants. However, the application of sludge as a nutrient source is limited by its high contents of water and pollutants. In this study, the effects of biomass type on nutrient recovery and heavy metal removal from digested sludge by hydrothermal treatment (HTT) were investigated. Blending biomass with digested sludge for HTT at 180-240 °C increased the recovery of nitrogen in the treated solids. At the HTT temperature of 240 °C, HTT with hardwood sawdust led to the highest nitrogen recovery of 70.6%, compared to the lowest nitrogen recovery of 36.5% without biomass. Blending biomass slightly decreased the recovery of phosphorus compared to those without biomass. Nevertheless, the lowest phosphorus recovery of 91.3% with the use of hardwood sawdust at the HTT temperature of 240 °C was only ∼7.0% less than that without biomass. Blending biomass reduced the contents of macro-metals such as Ca, Fe, Mg and Al in treated solids but the metal contents varied with different biomasses. Regarding the heavy metals, the use of rice husk did not decrease the contents of Ni and Co while blending bagasse did not decrease the content of Cr at HTT temperatures of 210 °C and 240 °C compared to the use of other biomasses. The different effects of biomass type on nutrient recovery and heavy metals were likely related to the types and abundances of organic acids such as acetic acid, oxygen-containing functional groups such as C-OH and COOH, oxide minerals such as silica from biomasses and the overall effects of these factors. This study provides very useful information in selection of lignocellulosic biomass for HTT of sludge for nutrient recovery and heavy metal removal.


Assuntos
Metais Pesados , Esgotos , Biomassa , Lignina , Nitrogênio/análise , Nutrientes , Fósforo
4.
3 Biotech ; 12(1): 39, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35070629

RESUMO

In this study, a mild-temperature two-step dilute acid and alkaline pretreatment (DA-AL) process was developed to generate highly digestible cellulose pulp from sugarcane bagasse for producing fermentable sugars by novel thermophilic cellulases derived from Phomopsis stipata SC 04. First, DA pretreatment of sugarcane bagasse at 2% (w/v) H2SO4 and 121 °C for 71 min, followed by AL pretreatment at 2.2% (w/v) NaOH and 110 °C for 100 min led to the pulp containing 86% cellulose. The cellulose pulp was hydrolyzed by the immobilized P. stipata cellulase on Ca-alginate beads, following optimization of immobilization conditions. The results showed that mixing the cellulase extract and sodium alginate solutions at a volume ratio of 1:4 led to the highest immobilization efficiencies of 99.83% for ß-glucosidase and 97.52% for endoglucanase while the enzyme leakage was the lowest. The use of the immobilized cellulases led to a cellulose digestibility of 30% in the initial batch and recycling of the immobilized cellulases reduced cellulose digestibility to 18% after s recycling for two times (a total of third rounds). Overall, this study provides useful information in the use of a mild pretreatment process to produce highly digestible cellulose pulp and in the immobilization of thermophilic cellulases to produce fermentable sugars from pretreated biomass. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-03101-2.

5.
Bioresour Bioprocess ; 8(1): 48, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38650217

RESUMO

Fructooligosaccharides (FOS) are a type of important prebiotics and produced by transfructosylating enzymes. In this study, sugarcane molasses was used as the substrate for production of transfructosylating enzymes by Aureobasidium pullulans FRR 5284. NaNO3 was a superior nitrogen source to yeast extract for production of transfructosylating enzymes by A. pullulans FRR 5284 and decreasing the ratio of NaNO3 to yeast extract nitrogen from 1:0 to 1:1 resulted in the reduction of the total transfructosylating activity from 109.8 U/mL to 82.5 U/mL. The addition of only 4.4 g/L NaNO3 into molasses-based medium containing 100 g/L mono- and di-saccharides resulted in total transfructosylating activity of 123.8 U/mL. Scale-up of the A. pullulans FRR 5284 transfructosylating enzyme production process from shake flasks to 1 L bioreactors improved the enzyme activity and productivity to 171.7 U/mL and 3.58 U/mL/h, 39% and 108% higher than those achieved from shake flasks, respectively. Sucrose (500 g/L) was used as a substrate for extracellular, intracellular, and total A. pullulans FRR 5284 transfructosylating enzymes, with a maximum yield of 61%. Intracellular, extracellular, and total A. pullulans FRR 5284 transfructosylating enzymes from different production systems resulted in different FOS profiles, indicating that FOS profiles can be controlled by adjusting intracellular and extracellular enzyme ratios and, hence prebiotic activity.

6.
Bioresour Bioprocess ; 8(1): 85, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38650262

RESUMO

Fructooligosaccharides (FOS) can be used as feed prebiotics, but are limited by high production costs. In this study, low-cost sugarcane molasses was used to produce whole-cell biocatalysts containing transfructosylating enzymes by Aureobasidium pullulans FRR 5284, followed by FOS production from molasses using the whole-cells of A. pullulans. A. pullulans in molasses-based medium produced cells and broth with a total transfructosylating activity of 123.6 U/mL compared to 61.0 and 85.8 U/mL in synthetic molasses-based and sucrose-based media, respectively. It was found that inclusion of glucose in sucrose medium reduced both transfructosylating and hydrolytic activities of the produced cells and broth. With the use of pure glucose medium, cells and broth had very low levels of transfructosylating activities and hydrolytic activities were not detected. These results indicated that A. pullulans FRR 5284 produced both constitutive and inducible enzymes in sucrose-rich media, such as molasses while it only produced constitutive enzymes in the glucose media. Furthermore, treatment of FOS solutions generated from sucrose-rich solutions using an invertase-deficient Saccharomyces yeast converted glucose to ethanol and acetic acid and improved FOS content in total sugars by 20-30%. Treated FOS derived from molasses improved the in vitro growth of nine probiotic strains by 9-63% compared to a commercial FOS in 12 h incubation. This study demonstrated the potential of using molasses to produce FOS for feed application.

7.
Bioresour Technol ; 318: 124059, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32911367

RESUMO

Acid-catalysed crude glycerol (ACG) pretreatment was carried out at 110 °C and 130 °C for mild fractionation of sugarcane bagasse into fermentable sugars and high-quality lignin. ACG pretreatment at 110 °C led to sugar yields of 71%-74%, comparable to those with acid-catalysed reagent-grade glycerol (AG). ACG pretreatment removed more lignin (53%-75%) than AG pretreatment (38%-49%), likely due to the presence of organic impurities in ACG. Hence, 28% more lignin was recovered from ACG pretreatment hydrolysate than with the AG pretreatment. NMR analysis revealed that recovered lignin was modified by glycerol through etherification of ß-aryl ethers and esterification of hydroxycinnamic acids, which prevented lignin condensation and led to the generation of ß-O-4 linkage-rich lignin at mild conditions (110 °C for 3 h and 5 h). This study suggests that crude glycerol is a suitable low-cost solvent for mild fractionation of lignocellulosic biomass into fermentable sugars and high-quality lignin for value-adding applications.


Assuntos
Lignina , Saccharum , Celulose , Glicerol , Hidrólise , Açúcares
8.
Bioresour Technol ; 313: 123666, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32562969

RESUMO

Two-step dilute acid and acid-catalysed glycerol pretreatment was developed to maximise sugar yield from sugarcane bagasse. At the laboratory scale, dilute acid pretreatment at 130 °C followed by acid-catalysed glycerol pretreatment at 170 °C led to a total sugar (C5 + C6) yield of 82%, 31% higher than that from one-step acid-catalysed glycerol pretreatment. At the pilot scale, the two-step dilute acid and acid-catalysed glycerol pretreatment led to a maximum sugar yield of 74%, 13% higher than that from one-step pretreatment with 52% reduction in glycerol usage. The enzymatic hydrolysate containing glucose and residual glycerol were used to produce microbial oils by a Rhodosporidium toruloides strain. A fed-batch cultivation strategy led to the production of 44.8 g/L cell mass, including 26.6 g/L oil, 8.6 g/L protein and 12.7 mg/L carotenoid. The cell mass and oil yields were 19% higher than those from batch cultivation as feedstock inhibition and catabolite repression were alleviated.


Assuntos
Saccharum , Biomassa , Celulose , Glicerol , Lipídeos
9.
Eng Life Sci ; 19(3): 217-228, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32625004

RESUMO

Acidified glycerol pretreatment is very effective to deconstruct lignocellulosics for producing glucose. Co-utilization of pretreated biomass and residual glycerol to bioproducts could reduce the costs associated with biomass wash and solvent recovery. In this study, a novel strain Rhodosporidium toruloides RP 15, isolated from sugarcane bagasse, was selected and tested for coconversion of pretreated biomass and residual glycerol to microbial oils. In the screening trails, Rh. toruloides RP 15 demonstrated the highest oil production capacity on glucose, xylose, and glycerol among the 10 strains. At the optimal C:N molar ratio of 140:1, this strain accumulated 56.7, 38.3, and 54.7% microbial oils based on dry cell biomass with 30 g/L glucose, xylose, and glycerol, respectively. Furthermore, sugarcane bagasse medium containing 32.6 g/L glucose from glycerol-pretreated bagasse and 23.4 g/L glycerol from pretreatment hydrolysate were used to produce microbial oils by Rh. toruloides RP 15. Under the preliminary conditions without pH control, this strain produced 7.7 g/L oil with an oil content of 59.8%, which was comparable or better than those achieved with a synthetic medium. In addition, this strain also produced 3.5 mg/L carotenoid as a by-product. It is expected that microbial oil production can be significantly improved through process optimization.

10.
Biosens Bioelectron ; 85: 363-370, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27196254

RESUMO

Electrochemical approaches have played crucial roles in bio sensing because of their Potential in achieving sensitive, specific and low-cost detection of biomolecules and other bio evidences. Engineering the electrochemical sensing interface with nanomaterials tends to new generations of label-free biosensors with improved performances in terms of sensitive area and response signals. Here we applied Silicon Nanowire (SiNW) array electrodes (in an integrated architecture of working, counter and reference electrodes) grown by low pressure chemical vapor deposition (LPCVD) system with VLS procedure to electrochemically diagnose the presence of breast cancer cells as well as their response to anticancer drugs. Mebendazole (MBZ), has been used as antitubulin drug. It perturbs the anodic/cathodic response of the cell covered biosensor by releasing Cytochrome C in cytoplasm. Reduction of cytochrome C would change the ionic state of the cells monitored by SiNW biosensor. By applying well direct bioelectrical contacts with cancer cells, SiNWs can detect minor signal transduction and bio recognition events, resulting in precise biosensing. Our device detected the trace of MBZ drugs (with the concentration of 2nM) on electrochemical activity MCF-7 cells. Also, experimented biological analysis such as confocal and Flowcytometry assays confirmed the electrochemical results.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Citocromos c/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Mebendazol/farmacologia , Nanofios/química , Silício/química , Moduladores de Tubulina/farmacologia , Técnicas Biossensoriais/métodos , Mama/efeitos dos fármacos , Mama/metabolismo , Neoplasias da Mama/metabolismo , Citocromos c/análise , Técnicas Eletroquímicas/métodos , Feminino , Humanos , Células MCF-7 , Nanofios/ultraestrutura
11.
Bioresour Technol ; 196: 17-21, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26218537

RESUMO

This study presents gravimetric enrichment of mixed culture to screen starch and lipid producing species separately in a sequencing batch reactor. In the enriched starch-producing mixed culture photobioreactor, the starch content at the end of steady state batch became 3.42 times the beginning of depletion. Whereas in the enriched lipid-producing photobioreactor, the lipid content at the end of steady state batch became 3 times the beginning of famine phase. The obtained results revealed that the gravimetric enrichment is a suitable screening method for specific production of storage compounds in none-sterile large-scaled condition.


Assuntos
Biotecnologia/métodos , Lipídeos/química , Microalgas/metabolismo , Amido/metabolismo , Técnicas de Cultura Celular por Lotes , Nitrogênio/farmacologia , Fotobiorreatores/microbiologia , Proteínas/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...